\qquad
\qquad

Find the antiderivatives of the following.

1. $f^{\prime}(x)=4 \sqrt[4]{x^{3}}+\frac{5}{\sqrt[3]{x^{2}}}+2$
2. $\frac{d y}{d x}=x^{-2}-x^{-1}+\sqrt[5]{x}$
3. $y^{\prime}=\sin x+x^{\frac{3}{2}}$

Evaluate the indefinite integrals.

4. $\int\left(3 x^{\frac{5}{2}}+2 e^{x}\right) d x$
5. $\int\left(\frac{5}{x}-\sin x\right) d x$
6. $\int(\sin x-\cos x) d x$

Find the function that satisfies the given conditions.
7. $s^{\prime}(t)=8 t^{2}+6 t-1$ and $s(3)=50$
8. $\frac{d y}{d x}=2 e^{x}+\sin x$ and $y(0)=2$
9. $f^{\prime \prime}(x)=3 x^{2}-8 x$ and $f^{\prime}(-2)=-20$ and $f(1)=3$
10. $f^{\prime \prime}(x)=6 x^{2}-\sin x$ and $f^{\prime}(0)=0$ and $f(0)=2$

Word Problems!

11. A particle moves along the x-axis for $t \geq 0$ with an acceleration of $a(t)=12 t+6$ where t is time in seconds. The particle's velocity at $t=3$ is 36 $\mathrm{cm} / \mathrm{sec}$. The initial position of the particle is 4 cm . What is the position of the particle when the velocity is zero?
12. A particle moves along the x-axis for $t \geq 0$ with an acceleration of $a(t)=24 t$ where t is time in seconds. The particle's velocity at $t=1$ is -36 $\mathrm{cm} / \mathrm{sec}$. The position of the particle at $t=2$ is -10 cm . What is the position of the particle when the velocity is zero?
13. A particle moves along the y-axis for $t \geq 0$ with an velocity of $v(t)=12 t^{2}-24 t$. The particle's initial position is 10 cm . Find the position of the function at the particle's minimum velocity.
14. A particle moves along the y-axis for $t \geq 0$ with postion of $x(t)=2 t^{3}+6 t^{2}-16 t-4$ where t is time in seconds and the initial position is -4 inches. Find the acceleration of the particle when $t=4$.

ANSWERS TO CORRECTIVE ASSIGNMENT

1. $f(x)=\frac{16}{7} \sqrt[4]{x^{7}}+15 \sqrt[3]{x}+2 x+c$	2. $y=-\frac{1}{x}-\ln x+\frac{5}{6} \sqrt[5]{x^{6}}+c$	3. $y=-\cos x+\frac{2}{5} \sqrt{x^{5}}+c$
4. $\frac{6}{7} \sqrt{x^{7}}+2 e^{x}+c$	5. $5 \ln x+\cos x+c$	6. $-\cos x-\sin x+c$
7. $s(t)=8 t^{3}+3 t^{2}-t-46$	8. $y=2 e^{x}-\cos x+1$	9. $f(x)=\frac{1}{4} x^{4}-\frac{4}{3} x^{3}+4 x+\frac{1}{12}$
10. $f(x)=\frac{1}{2} x^{4}+\sin x-x+2$	11. -40 cm	$12 .-10 \mathrm{~cm}$

